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ABSTRACT 

Research has demonstrated well-being benefits from positive, 

‘peak’ emotions such as awe and wonder, prompting the HCI 

community to utilize affective computing and AI modelling for 

elicitation and measurement of those target emotional states. The 

immersive nature of virtual reality (VR) content and systems can 

lead to feelings of awe and wonder, especially with a responsive, 

personalized environment based on biosignals. However, an 

accurate model is required to differentiate between emotional states 

that have similar biosignal input, such as awe and fear. Deep 

learning may provide a solution since the subtleties of these 

emotional states and affect may be recognized, with biosignal data 

viewed in a time series so that researchers and designers can 

understand which features of the system may have influenced target 

emotions. The proposed deep learning fusion system in this paper 

will use data collected from a corpus, created through collection of 

physiological biosignals and ranked qualitative data, and will 

classify these multimodal signals into target outputs of affect. This 

model will be real-time for the evaluation of VR system features 

which influence awe/wonder, using a bio-responsive environment. 

Since biosignal data will be collected through wireless, wearable 

sensor technology, and modelled through the same computer 

powering the VR system, it can be used in field research and 

studios. 
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1 INTRODUCTION 

Awe experiences can lead to shifts in perspective, changes to how 

people see their relationship with the world. Furthermore, awe 

tends to provide therapeutic and educational benefits [1-5].  

     Additionally, awe is correlated with increased willingness to 

volunteer, and increased life satisfaction [6]. Being awestruck is 

also good for physical health: of six positive emotions, awe was 

found to be the strongest predictor of reduction in inflammatory 

cytokines [7], which are responsible for the initiation and 

persistence of pain. There are more examples of how being 

awestruck is good for the environment, social connectivity, and 

health, and many individuals have their own stories of how natural 

wonders, spaceflight, transformative life events, and artistic 

artifacts have elicited awe. 

Awe-inspiring events in our natural world are quite rare but 

when they occur, it is with an immediate and intense manner that 

can be felt as a sensation of ‘chills’ or with the elicitation of goose 

bumps on the skin [8], see Fig. 1. This can be measured via 

physiological biosignals via skin surface video recording, which 

delivers an objective, unobtrusive means of recording and 

analyzing triggers of these states. In the study of profound 

transformative experiences, it is important to be able to objectively 

monitor the phenomenon for validity, but also to remove the burden 

of self-report from the participant. Reliance on self-reports of 

feelings can have major drawbacks, including the need for users to 

continuously self-monitor which can have the unwanted effect of 

removing them from an emotional state, and this data typically is 

retrospective. To address this, Benedek & Kaernbach [9] suggest 

physiological monitoring of these peak emotional events with many 

real-time physiological devices now that can collect data. While 

researchers now understand many of the psychophysiological 

mechanics that correlate with powerful affective states like awe and 

fear, there is currently few ways to measure the magnitude of this 

correlation, and therefore classify the target states accurately. 

 

 

Figure 1: Appearance of goose bumps on skin. 

1.1 Motivation 

The consequence of successfully prompting an awe-inspiring 

experience with immersive virtual environments could be 

profound. Strong experiences of affect like awe are rare 

phenomena, and suffer from lower intensities in a lab environment 

due to possible issues with ecological validity [10]. For example, it 

is difficult to simulate an experience of great natural beauty and 

vastness to the same level of aesthetic detail and embodiment as in 

real life, thus missing a critical wellness experience for the 

participant, especially those with mobility or travel logistic issues. 

To address this, immersive, virtual environments can be 

personalized, with stimuli presented in a controlled, private, 
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physically accommodating manner superior to similar immersive 

delivery methods (large format screens like IMAX theatres, 

motion-tracked CAVE automatic virtual environments). Chirico 

[11] posits that these very personalized features may assist in 

eliciting higher-intensity awe in a controlled setting. Except for our 

pilot study of 16 participants in VR [12], this is largely unexplored 

especially with interactivity features. The reasons for this are 

largely two-fold: 1) awe-inspiring events are rare in controlled-

laboratory environments; and 2) there is a lack of common verbal 

expression for profound, emotional experiences. 

Phenomenological methodology, self-reports, and interview data 

collection methods provide some insight into the experience of awe 

[8-10, 13-15], but the aforementioned drawbacks exist, with data 

being retrospective, subjective, with possible misinterpretations 

between participant and facilitator; and requiring a laboratory 

environment and extensive time to collect data. Using these 

methods alone, it is challenging to collect data, or suggest that 

findings in the lab may transfer into the field. 

At the same time, researchers need an affordable tool for 

measuring and delivering experiences of awe for further 

understanding of the phenomenon and the events that trigger it. 

With our proposed study, we aim to utilize a deep learning 

multimodal fusion model that can extract salient features from 

multiple biosensors and annotated qualitative events in performing 

classification of affective states. This system will be part of a 

wearable tool comprising of a wireless webcam for video of goose 

bumps and skin conductance sensors (Fig. 2) that can record the 

user’s continuous biosignal data without the need to be in a lab 

environment. Our aim is that by learning salient features of peak 

positive emotional experiences like awe, we can identify features 

in the VR system that prompt these feelings, which in turn will 

allow us to create more effective VR experiences for profound 

emotion elicitation.  

1.2 Data corpus for emotion and affect in VR 

It has been reliably demonstrated that changes with the body’s 

physiological signals represents a shift in emotional state. These 

changes reflect the way the autonomic nervous system (ANS) and 

central nervous system (CNS) process internal events within the 

body and mind. Many physiological sensors can validate emotional 

states and affective moments, with electrocardiograms (ECG), 

heart rate (HR), galvanized skin response (GSR), skin conductance 

(SC), electrodermal activity (EDA), electroencephalogram (EEG), 

and electromyogram (EMG) all reliably tested [16-17]. 

More recently, profound shifts in emotional states of awe and 

wonder have been detected through visible goose bumps on the 

skin. Kelter & Haidt [1] demonstrated that goose bumps are a 

distinct central autonomic nervous system marker of awe 

associated with sympathetic activity. The correlation of chills and 

goose bumps to awe inspiring, affective experiences are well 

established [8, 13, 18]. Sumpf, Jentschke, & Koelsch [19] proposed 

heart rate variability (HRV), and Galvanic Skin Response (GSR) as 

additional measures to goose bumps [20]. 

For human computer interaction (HCI) and UX, physiological 

biosensing are becoming popular for the exploration of user 

affective experience. Findings have revealed significant 

correlations between psychophysiological arousal via HR and EDA 

with self-reported emotion in gameplay [21], with biosensing 

technology now readily available with the surge of wearable 

biosensing technology like FitBit for health monitoring, and 

biosensing interfaces for entertainment (gaming) to replace 

traditional game controllers. 

 

 

Figure 2: Interior view of the wireless wearable research tool, 

consisting of a HD video camera for macro 1 x 1 inch coverage of 

participant’s skin surface for goose bump recording. 

2 DESIGNING AFFECTIVE VR THROUGH 

AI 

2.1 Use of the time series 

A time series (TS) is a collection of values obtained from 

sequentially ordered measurements or values, often visually 

represented as a database or graph. Measurements are uniformly 

spaced (time instants) at a given sampling rate. Represented as T, a 

time series is as follows: 

T = (t1,...,tn), ti ∈  R.                           (1) 

While clusters are frequently used in data mining where labels 

are often unknown in the dataset, classification differs in that 

classes are known in advance, and the algorithm is trained on this 

example dataset [22]. First, we must understand what the features 

are, as they will belong to different classes. This way, when an 

unlabeled dataset is fed into the system, it can assign the 

appropriate class. For this study, TS classification will be the aim 

rather than clustering, as we can appropriately label intense feelings 

of positive emotion into categories. We need our system to identify 

the features as learned through the labeled training data set and 

classify new datasets. This can be done effectively with 

Convolutional Neural Networks (CNNs), which are suitable for TS 

classification through the use of window slicing for classification 

at the slice level [23], and are robust to scaling issues, i.e: different 

time series may contain differing time scales, common with 

biosignal data. As a deep learning method, the features extracted by 

CNNs are not handcrafted (manually added) as they are with non-

deep learning models. 

2.2 Pattern recognition and multimodal fusion 

Pattern recognition consists of recognizing an object based on 

its unique attributes and features. While TS classification and 

pattern recognition is complex enough within a single biosignal TS, 

it is important to note that a comprehensive, accurate classification 
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may not be possible without a multimodal approach. It should be 

noted that humans use multiple modalities to feel and express a 

state [24]; humans do not emote through one channel alone. An 

advantage to using deep learning (DL) in CNNs for multimodal 

biosensing recognition and classification is that the sensors can be 

collected from an unconstrained environment, meaning no 

baseline, and no significant data preprocessing or handcrafted 

feature selection is required [25]; learning can occur through 

ordered feature representation from raw data. Additionally, CNN 

based classifiers have been more accurate than k-Nearest Neighbor 

algorithm and Support Vector Machine models for event 

classification of multi-senor environments [26-27]. It is for these 

compelling reasons and because of the accuracy of DL CNN 

models of emotion and affect that we propose to use a similar 

method utilizing multi-sensor physiological data. Deep multimodal 

fusion models demonstrate filter-pooling methods provide the most 

effective fusion for accurate predictions [28]. User events such as 

annotated comments made by the participant (discrete signals) are 

recorded in parallel with physiological (continuous) biosignals, and 

used in a CNN with a Single Layer Perceptron (SLP). Through 

fusing aspects of the system such as user events with physiological 

data, we can better evaluate the VR system for target affect and 

emotion by understanding the elicitor of the target affect and 

emotional state, and then further facilitate these targets in VR. 

 

3 METHODS 

3.1 Emotional Inducement in VR 

For this study, we are interested in feelings of peak positive 

affect while interacting with immersive VR. Our stimulus is a 

visualization of the Earth, in which many participants experience a 

sense of awe and wonder through visiting places on earth [12]. We 

call this stimulus the ‘Earthgazing’ content, and is presented in VR, 

as seen in Fig. 3. To understand how affect-inducing the 

Earthgazing content is, we need to compare it to content that was 

created for dissimilar purposes. We choose an educational game of 

the same length, designed to be informative in nature and not 

designed to induce positive affect. Both sets of content are created 

by the researchers in Unity3D, and use the same navigational 

interface (HTC Vive hand controllers), and head-mounted display 

(HTC Vive).    

 

 

Figure 3: experimental setup with participant ‘earthgazing’. 

 

DEFINITIONS 

Cued recall debrief: a video situated recall methodology 

applied in naturalistic research, with the aim of re-immersing 

the participant and gaining insight into their thoughts and 

feelings of the system being evaluated. (Bentley et al., 2005) 

Affect: a short term, discrete, and conscious subjective feeling 

that may have an influence upon a person’s overall emotion 

(Bentley et al., 2005, p. 3). Affective meaning is the degree at 

which a situation or object changes an individual’s reaction to 

the environment (Duncan & Barrett, 2007). 

3.2 Data collection and labelling 

For the training data, it is important to accurately label the 

samples accordingly to their affective state. This will be conducted 

through a process of cued recall debriefing, which re-immerses the 

participant with the VR system content and gains insight into their 

thoughts and feelings [29]. This is a trusted method of data 

collection and analytics for UX evaluation, because it can isolate 

features of the system design that may be responsible an affective 

event. During cued recall, the facilitator can view the biosignals on 

TS and annotate a comment made by the participant about their 

affective state (see Fig. 4). Such an affective statement may be 

“Whoa!” indicating surprise or wonder, or “I felt I was part of a 

greater collective”, indicating a potential awe-inspiring experience. 

Participants may also directly categorize their affective states, such 

as statements like “entering this scene made me feel afraid right 

there”, or “I felt awe when I looked at the Earth”. Such statements 

can be coded into their appropriate affective states, through 

thematic analysis. Regardless of how they are coded, the comments 

made by the participant will be annotated on the time series, but 

coded after the session with the participant is concluded.  

These discrete affective annotations can be transformed into 

binary continuous signals and when a window is generated around 

them, features from biosignals may be seen within the window. As 

each annotated event will be within its own window, the window 

as a sample will be pairwise ranked for feelings of awe, excitement, 

motion sickness, and frustration based on the interpretation from 

the cued recall debriefing (coded thematic analysis).  

 

Figure 4: affective comment annotated within a joint display of 

physiological data. 

A final step after the cued-recall debriefing is concluded, is that 

the participant will be asked to rank the entire experience of the 

Earthgazing content and educational content. The facilitator will 
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ask the participant to rank the more awe-inspiring/exciting/motion 

sickness inducing/frustrating pair: A or B; both are equally so; 

neither are so. The purpose of ranking the entire experience and 

annotating the events themselves is so that we have rankings for the 

preference learning of the model across the experience, and within 

windows centered on events. With this method, we aim for 

experimental validity and to utilize the framework set by 

Yannakakis & Martínez [30] that demonstrates rank-based 

questions yield more reliable models on the constructs of emotion 

and preference than rating-based questions. 

 

4 MODELING, TRAINING, & 

CLASSIFICATION 

Each neuron defines one local feature which is extracted at 

every position of the input signal, with the output creating a new 

signal called a feature map (lower time resolution output). Reduced 

dimensionality of the convolutional layer is created through filtered 

feature maps consisting of the fusion of the biosignals and discrete 

data events (annotated comments from cued recall debriefing) that 

are transformed to continuous binary signals with a decay rate; see 

Fig. 5. Windows are centered on events, displaying the newly 

created signal of patterns. 

The classification is the output layer of the neural network. In 

this case, the classification/output is a representation of the 

affective states. The output will be determined from the outcome of 

the initial corpus data collection, where researchers will be 

assigning annotated events from participants into categories of awe, 

excitement, motion sickness, and frustration. From these 

categories, classifications will be generated. Automation of feature 

extraction is possible through Preference Deep Learning (PDL), 

which was first applied to psychophysiology by Martínez et al., 

[31] with pairwise preference events of affect across two 

biosignals. Preference learning handles pairs of data samples (xP, 

xN), as a model that “outputs higher values for the samples 

preferred on each pair and lower for the non-preferred” sample [28, 

p. 4], xP is preferred over/greater than xN. Since we know some of 

the main features and labels that we’d like to use in our training 

data but still wish to discover new and unknown features, this is an 

appropriate technique. With PDL, the SLP is trained to predict the 

affective state of a user via their biosignals through 

backpropagation, like Rank Margin error function. 

If accurate, this will allow for the VR system to become bio-

reactive and adjust the participant’s environment to personalize 

their experience, IE: if they are predicted to be experiencing fear, 

the system integrates calming audio-visual stimuli; if the 

participant is possibly experiencing awe, the system may respond 

with a crescendo of music and aesthetic beauty.   

 

 

Figure 5: Fusion of continuous biosignals and events (binary 

continuous). 

5 FUTURE WORK 

Through our proposed study, we aim to augment existing rank-

based PDL systems [28, 31] with a validation technique of 

qualitative cued recall data and categorization of participant 

affective states for the labelling of our corpus datasets for positive, 

profound emotion classification. In fusing multimodal 

physiological signals with reported events of affect like awe and 

wonder, our aim is to utilize a CNN for accurate classification of 

output states, demonstrating that complex time series data can be 

integrated in a model of affect. This work involves the collection of 

skin conductance and goose bump physiological data alongside the 

cued recall annotated events from participants for training data (the 

corpus), and once collected will be made open-sourced for public 

use. We will test the model and make iterative adjustments to the 

model parameters, including number of layers, the model will be 

evaluated for accuracy, and reported with descriptive and 

inferential statistics. If the system accurately classifies the target 

output affect states, we will observe whether new salient features 

have been discovered.  

Such a tool as this can be regarded a type of “emotive media”, 

specifically fitting into the characteristic of bio-feedback sensors 

creating a pathway for interactive applications to discover 

emotional states [32]. Because emotional VR has been seen to elicit 
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specific verbal and physical responses in our studies, such as a 

sharp intake of breath, outbursts of ‘whoa!’, or physically relaxing 

in posture [33], it may be valuable to collect basic social signals. 

Such signals are used in human-robot interaction, with speech, 

posture, and body orientation data collected and modelled into 

behavior generation modules for state-sensitive behaviours [34]. 

Such data could be collected during the creation of the data corpus, 

and coded based on the cues noted in video recordings. This data 

could be particularly useful in helping to differentiate between 

profound affective states that may have similar biosignal features 

in at least one sensor modality, for example between a fear-

inducing moment, or a profound awe-inducing moment, both of 

which may induce physiological goosebumps- yet verbal or posture 

data may clearly indicate which state is more probable.    

In utilizing a deep learning approach to a wearable biosensing 

research tool for study of positive peak emotion, we hope the work 

may be utilized by researchers, designers, and artists for evaluation 

and creation of bio-responsive, personalized VR environments. 
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